New Castle County
A Case Study of Counting the Number of Unique Users in Linear and Non-Linear Trails -- A Multi-Agent System Approach
Parks play a crucial role in enhancing the quality of life by providing recreational spaces and environmental benefits. Understanding the patterns of park usage, including the number of visitors and their activities, is essential for effective security measures, infrastructure maintenance, and resource allocation. Traditional methods rely on single-entry sensors that count total visits but fail to distinguish unique users, limiting their effectiveness due to manpower and cost constraints.With advancements in affordable video surveillance and networked processing, more comprehensive park usage analysis is now feasible. This study proposes a multi-agent system leveraging low-cost cameras in a distributed network to track and analyze unique users. As a case study, we deployed this system at the Jack A. Markell (JAM) Trail in Wilmington, Delaware, and Hall Trail in Newark, Delaware. The system captures video data, autonomously processes it using existing algorithms, and extracts user attributes such as speed, direction, activity type, clothing color, and gender. These attributes are shared across cameras to construct movement trails and accurately count unique visitors. Our approach was validated through comparison with manual human counts and simulated scenarios under various conditions. The results demonstrate a 72% success rate in identifying unique users, setting a benchmark in automated park activity monitoring. Despite challenges such as camera placement and environmental factors, our findings suggest that this system offers a scalable, cost-effective solution for real-time park usage analysis and visitor behavior tracking.
ICanC: Improving Camera-based Object Detection and Energy Consumption in Low-Illumination Environments
Ma, Daniel, Zhong, Ren, Shi, Weisong
This paper introduces ICanC (pronounced "I Can See"), a novel system designed to enhance object detection and optimize energy efficiency in autonomous vehicles (AVs) operating in low-illumination environments. By leveraging the complementary capabilities of LiDAR and camera sensors, ICanC improves detection accuracy under conditions where camera performance typically declines, while significantly reducing unnecessary headlight usage. This approach aligns with the broader objective of promoting sustainable transportation. ICanC comprises three primary nodes: the Obstacle Detector, which processes LiDAR point cloud data to fit bounding boxes onto detected objects and estimate their position, velocity, and orientation; the Danger Detector, which evaluates potential threats using the information provided by the Obstacle Detector; and the Light Controller, which dynamically activates headlights to enhance camera visibility solely when a threat is detected. Experiments conducted in physical and simulated environments demonstrate ICanC's robust performance, even in the presence of significant noise interference. The system consistently achieves high accuracy in camera-based object detection when headlights are engaged, while significantly reducing overall headlight energy consumption. These results position ICanC as a promising advancement in autonomous vehicle research, achieving a balance between energy efficiency and reliable object detection.
Robust 4D Radar-aided Inertial Navigation for Aerial Vehicles
Zhu, Jinwen, Hu, Jun, Zhao, Xudong, Lang, Xiaoming, Mao, Yinian, Huang, Guoquan
While LiDAR and cameras are becoming ubiquitous for unmanned aerial vehicles (UAVs) but can be ineffective in challenging environments, 4D millimeter-wave (MMW) radars that can provide robust 3D ranging and Doppler velocity measurements are less exploited for aerial navigation. In this paper, we develop an efficient and robust error-state Kalman filter (ESKF)-based radar-inertial navigation for UAVs. The key idea of the proposed approach is the point-to-distribution radar scan matching to provide motion constraints with proper uncertainty qualification, which are used to update the navigation states in a tightly coupled manner, along with the Doppler velocity measurements. Moreover, we propose a robust keyframe-based matching scheme against the prior map (if available) to bound the accumulated navigation errors and thus provide a radar-based global localization solution with high accuracy. Extensive real-world experimental validations have demonstrated that the proposed radar-aided inertial navigation outperforms state-of-the-art methods in both accuracy and robustness.
Learnable Residual-based Latent Denoising in Semantic Communication
Xu, Mingkai, Wu, Yongpeng, Shi, Yuxuan, Xia, Xiang-Gen, Zhang, Wenjun, Zhang, Ping
A latent denoising semantic communication (SemCom) framework is proposed for robust image transmission over noisy channels. By incorporating a learnable latent denoiser into the receiver, the received signals are preprocessed to effectively remove the channel noise and recover the semantic information, thereby enhancing the quality of the decoded images. Specifically, a latent denoising mapping is established by an iterative residual learning approach to improve the denoising efficiency while ensuring stable performance. Moreover, channel signal-to-noise ratio (SNR) is utilized to estimate and predict the latent similarity score (SS) for conditional denoising, where the number of denoising steps is adapted based on the predicted SS sequence, further reducing the communication latency. Finally, simulations demonstrate that the proposed framework can effectively and efficiently remove the channel noise at various levels and reconstruct visual-appealing images.
Demonstrating CavePI: Autonomous Exploration of Underwater Caves by Semantic Guidance
Gupta, Alankrit, Abdullah, Adnan, Li, Xianyao, Ramesh, Vaishnav, Rekleitis, Ioannis, Islam, Md Jahidul
Enabling autonomous robots to safely and efficiently navigate, explore, and map underwater caves is of significant importance to water resource management, hydrogeology, archaeology, and marine robotics. In this work, we demonstrate the system design and algorithmic integration of a visual servoing framework for semantically guided autonomous underwater cave exploration. We present the hardware and edge-AI design considerations to deploy this framework on a novel AUV (Autonomous Underwater Vehicle) named CavePI. The guided navigation is driven by a computationally light yet robust deep visual perception module, delivering a rich semantic understanding of the environment. Subsequently, a robust control mechanism enables CavePI to track the semantic guides and navigate within complex cave structures. We evaluate the system through field experiments in natural underwater caves and spring-water sites and further validate its ROS (Robot Operating System)-based digital twin in a simulation environment. Our results highlight how these integrated design choices facilitate reliable navigation under feature-deprived, GPS-denied, and low-visibility conditions.
Advances in Set Function Learning: A Survey of Techniques and Applications
Set function learning has emerged as a crucial area in machine learning, addressing the challenge of modeling functions that take sets as inputs. Unlike traditional machine learning that involves fixed-size input vectors where the order of features matters, set function learning demands methods that are invariant to permutations of the input set, presenting a unique and complex problem. This survey provides a comprehensive overview of the current development in set function learning, covering foundational theories, key methodologies, and diverse applications. We categorize and discuss existing approaches, focusing on deep learning approaches, such as DeepSets and Set Transformer based methods, as well as other notable alternative methods beyond deep learning, offering a complete view of current models. We also introduce various applications and relevant datasets, such as point cloud processing and multi-label classification, highlighting the significant progress achieved by set function learning methods in these domains. Finally, we conclude by summarizing the current state of set function learning approaches and identifying promising future research directions, aiming to guide and inspire further advancements in this promising field.
Generalization Performance of Hypergraph Neural Networks
Wang, Yifan, Arce, Gonzalo R., Tong, Guangmo
Hypergraph neural networks have been promising tools for handling learning tasks involving higher-order data, with notable applications in web graphs, such as modeling multi-way hyperlink structures and complex user interactions. Yet, their generalization abilities in theory are less clear to us. In this paper, we seek to develop margin-based generalization bounds for four representative classes of hypergraph neural networks, including convolutional-based methods (UniGCN), set-based aggregation (AllDeepSets), invariant and equivariant transformations (M-IGN), and tensor-based approaches (T-MPHN). Through the PAC-Bayes framework, our results reveal the manner in which hypergraph structure and spectral norms of the learned weights can affect the generalization bounds, where the key technical challenge lies in developing new perturbation analysis for hypergraph neural networks, which offers a rigorous understanding of how variations in the model's weights and hypergraph structure impact its generalization behavior. Our empirical study examines the relationship between the practical performance and theoretical bounds of the models over synthetic and real-world datasets. One of our primary observations is the strong correlation between the theoretical bounds and empirical loss, with statistically significant consistency in most cases.
An Interoperable Machine Learning Pipeline for Pediatric Obesity Risk Estimation
Fayyaz, Hamed, Gupta, Mehak, Ramirez, Alejandra Perez, Jurkovitz, Claudine, Bunnell, H. Timothy, Phan, Thao-Ly T., Beheshti, Rahmatollah
Reliable prediction of pediatric obesity can offer a valuable resource to providers, helping them engage in timely preventive interventions before the disease is established. Many efforts have been made to develop ML-based predictive models of obesity, and some studies have reported high predictive performances. However, no commonly used clinical decision support tool based on existing ML models currently exists. This study presents a novel end-to-end pipeline specifically designed for pediatric obesity prediction, which supports the entire process of data extraction, inference, and communication via an API or a user interface. While focusing only on routinely recorded data in pediatric electronic health records (EHRs), our pipeline uses a diverse expert-curated list of medical concepts to predict the 1-3 years risk of developing obesity. Furthermore, by using the Fast Healthcare Interoperability Resources (FHIR) standard in our design procedure, we specifically target facilitating low-effort integration of our pipeline with different EHR systems. In our experiments, we report the effectiveness of the predictive model as well as its alignment with the feedback from various stakeholders, including ML scientists, providers, health IT personnel, health administration representatives, and patient group representatives.
Hunter Biden's sentencing date in gun case set for week after election
First son Hunter Biden will be sentenced on Nov. 13, the week after the general election, after he was found guilty on charges in the criminal case focused on his purchase of a handgun in 2018. Judge Maryellen Noreika, in a court order Friday, set the sentencing date for Wednesday, Nov. 13, at 10:00 a.m. at the J. Caleb Boggs Federal Building in Wilmington, Delaware. President Biden's son will learn his fate 8 days after the 2020 presidential election. Hunter Biden was found guilty in June of making a false statement in the purchase of a gun, making a false statement related to information required to be kept by a federally licensed gun dealer, and possession of a gun by a person who is an unlawful user of or addicted to a controlled substance. He faces a total maximum prison time of 25 years for the three charges.
Adaptive Cascading Network for Continual Test-Time Adaptation
Nguyen, Kien X., Qiao, Fengchun, Peng, Xi
We study the problem of continual test-time adaption where the goal is to adapt a source pre-trained model to a sequence of unlabelled target domains at test time. Existing methods on test-time training suffer from several limitations: (1) Mismatch between the feature extractor and classifier; (2) Interference between the main and self-supervised tasks; (3) Lack of the ability to quickly adapt to the current distribution. In light of these challenges, we propose a cascading paradigm that simultaneously updates the feature extractor and classifier at test time, mitigating the mismatch between them and enabling long-term model adaptation. The pre-training of our model is structured within a meta-learning framework, thereby minimizing the interference between the main and self-supervised tasks and encouraging fast adaptation in the presence of limited unlabelled data. Additionally, we introduce innovative evaluation metrics, average accuracy and forward transfer, to effectively measure the model's adaptation capabilities in dynamic, real-world scenarios. Extensive experiments and ablation studies demonstrate the superiority of our approach in a range of tasks including image classification, text classification, and speech recognition.